Back Paper Examination : Differential Topology. BMath III

Max. Marks: 100

Time : 3 hours

Answer all questions. You may use theorems/propositions proved in the class after correctly stating them. Any other claim must be accompanied by a proof.

(1) State the preimage theorem. Let I_n denote the $n \times n$ identity matrix and X denote the set

$$X = \{A \in M_n(\mathbb{R}) : A^t A = I_n\}$$

of orthogonal matrices. Show that X is a manifold. Find dim(X) and describe the tangent space $T_A(X)$ at $A \in X$. [3+6+3+3]

(2) State Sard's theorem. Let $f, g : \mathbb{S}^1 \to \mathbb{R}^3$ be two smooth maps. Given $\varepsilon > 0$, show that there exists $v \in \mathbb{R}^3$ such that $||v|| < \varepsilon$ and [4+10]

$$f(S^{\perp}) \cap (g(S^{\perp}) + v) = \emptyset.$$

- (3) Define the notion of a Morse function on a manifold. Find the critical points of the function $f: S^1 \to \mathbb{R}$ defined by f(x, y) = x. Show that f is a Morse function. [4+6+4]
- (4) Let X be a manifold without boundary. Show that the tangent bundle T(X) is manifold with $\dim(T(X)) = 2 \cdot \dim(X)$. [12]
- (5) For what values of a does the hyperboloid defined by $x^2 + y^2 z^2 = 1$ (in \mathbb{R}^3) intersect the sphere $x^2 + y^2 + z^2 = a$ (in \mathbb{R}^3) transversally. Give complete justifications. [15]
- (6) Let f : X → Y be a smooth map that is one-one on a compact submanifold Z of X. Suppose that for all x ∈ Z, the derivative df_x : T_x(X) → T_{f(x)}(Y) is an isomorphism. Show that f : Z → f(Z) is a diffeomorphism. Further show that there exists an open set U in X with Z ⊆ U such that f(U) is open in Y and

$$f: U \longrightarrow f(U)$$

a diffeomorphism. The manifolds
$$X, Y, Z$$
 are boundaryless. $[5+10]$

(7) Let X, Y be manifolds, $Z \subseteq Y$ a submanifold and $f: X \to Y$ a smooth map. Under what conditions is the intersection number $I_2(f, Z)$ defined? Give the complete definition. Let $f: S^1 \to S^2$ be the map f(x, y) = (x, y, 0). Compute $I_2(f, Z)$ where

$$Z = \{ (x, y, z) \in S^2 : z = 0 \}$$

is the equator of S^2 .

$$[5 + 10]$$